Refine Your Search

Search Results

Technical Paper

Leveraging Risk Tolerances and Simple Kinematics to Quantify Fault Tolerant Time Intervals for Commercial Trucks

2021-04-06
2021-01-0066
The ISO 26262 series of standards for vehicle functional safety codify requirements to avoid unreasonable risk from the failure of electrical or electronic (E/E) systems. E/E failures may cause malfunctioning behavior that manifest as vehicle-level hazardous events. The ISO 26262 second edition includes commercial trucking, which employs significant variation from the passenger car development cycle. The highly distributed nature of E/E system development and integration in commercial trucks complicates forging unified safety concepts. For instance, the Fault Tolerant Time Interval (FTTI) quantifies the minimum time span from the occurrence of a fault to the possible occurrence of a hazardous event. Often, the subjectivity involved in defining unreasonable risk and hazardous event onset frustrates consensus among stakeholders.
Technical Paper

Life Estimation of Vehicle Sub-Systems Using Vibrational Fatigue

2019-01-09
2019-26-0291
Most popular practice for analyzing the Subsystem failures in commercial vehicles is physical testing. These physical tests are carried out by three tests; Endurance testing, Accelerated Endurance Testing and Rig test simulation. All the three methods are costly and repetitive iterations of these tests is not economical. Therefore, in our organization, we established a method in virtual domain in order to reduce the repetitive iterations and also reduction in time consumed per iteration. General practice in our organization for Finite Element Analysis (FEA) calculation was inclusive of Model preparation, Transient analysis using Nastran. The results from the Transient analysis are used for performing fatigue analysis in fatigue software. In this process, Transient analysis and Model preparation are very much time consuming processes. Model preparation cannot be reduced, but to reduce the transient analysis time, we established a method in frequency domain (vibrational fatigue) [1].
Technical Paper

The Normal-Load and Sliding-Speed Dependence of the Coefficient of Friction, and Wear Particle Generation Contributing to Friction: High-Copper and Copper-Free Formulations

2019-09-15
2019-01-2131
Automotive brakes operate under varying conditions of speed and deceleration. In other words, the friction material is subjected to a wide range of normal loads and sliding speeds. One widely accepted test procedure to evaluate, compare and screen friction materials is the SAE J2522 Brake Effectiveness test, which requires full-size production brakes to be tested on an inertia brake dynamometer. For the current investigation, disc pads of two types of 10 different formulations (5 high-copper and 5 copper-free formulations) were prepared for testing on a front disc brake suitable for a pickup truck of GVW 3,200 kg. Each pad had 2 vertical slots, and one chamfer on the leading edge and also on the trailing edge of the pad. One segment of the test procedure looks at the coefficient of friction (Mu) under different brake line pressures and different sliding speeds to determine its stability or variability.
Journal Article

Evaluating Influence of On-Road Parameter Variation in HD Application Using Virtual Approach for Upcoming IRDE Norms

2021-09-22
2021-26-0405
Real Driving Emission (RDE) norms have changed the way vehicles are required to be calibrated and developed. This has moved the legislative requirements from predictable lab conditions to more realistic, real world conditions. Current Indian legislation allows certification for Heavy Duty (HD) applications on engine level and therefore decoupled from vehicle and the real world scenarios such as uncertainty and randomness in driver behavior, traffic conditions, road profiles, ambient conditions etc. which are not captured. Upcoming RDE legislation to be implemented in year 2023, has made it necessary to integrate engine with vehicle to consider the impact of various parameters on engine operating points and therefore on tail pipe emissions. This paper focusses upon the methodology developed using RDE cycle generator tool (RCG) for generating on-road parameters which influences the zone of engine operation and resulting emission levels.
Technical Paper

Impact of Different LCI Modelling Scenarios on the LCA Results, A Case Study for the Automotive Sector

2023-04-11
2023-01-0884
Since vehicles are comprised of thousands of components, it is essential to reduce the Life Cycle Inventory (LCI) modelling workload. This study aims to compare different LCI modeling workload-reducing scenarios to provide a trade-off between the workload efforts and result accuracy. To achieve the optimal balance between computational effort and data specification requirements, the driver seat is used as a case study, instead of the entire vehicle. When all the components of a conventional light-duty commercial vehicle are sorted by mass descending order, seats are among the first five. In addition, unlike the other components, seats are comprised of metals as well as a wide range of plastics and textiles, making them a representative test case for a general problem formulation. In this way, methodology and outcomes can be reasonably extended to the entire vehicle.
Journal Article

Legibility: Back to the Basics

2011-04-12
2011-01-0597
The objective for this study was to revisit some of the known factors that affect legibility including font characteristics, as well as, contrast polarity, luminance contrast, and color contrast under high ambient conditions as specified in SAE J1757. The study focused on older drivers due to their increased visual needs and limitations. The study was conducted in 2 phases: 1) a study of font characteristics; character height, character width, and stroke width using a central composite design. Subjects read a group of letters and numerals displayed on a laptop display using occlusion goggles. The reading time (Total Shutter Open Time or TSOT), reading errors, and a subjective Readability Rating (using a 4 point scale "Very Easy," "Easy," "Difficult," "Very Difficult") were recorded. Licensed drivers in three age groups, 25 to 44 yrs, 45 to 59 yrs, and 61 to 91 yrs participated. The response surfaces were generated and compared to the character sizes recommended in ISO 15008.
Journal Article

Design and Development of Electro Hydraulics Hitch Control for Agricultural Tractor

2017-01-10
2017-26-0227
Tractor hitch control system is used for attaching and operating various Agricultural Implements and for operating tipping trailer. The system has also got provision to attach additional Aux valves for rear and front mounted attachments. The rear mounted implements are coupled to the tractor using Three Point Linkage (3PL) System. The hitch hydraulics system consists of hydraulic pump, filter, piping’s, fittings and hydraulics lift unit. Hydraulics lift unit consists of a proportional control valve, cylinder, piston and power linkages. Conventional control valve is hydro mechanical part operated by mechanical linkages. The control valve and linkages plays major role in performance of hydraulics system. Hydraulics is required to operate in extreme conditions of soils such as very soft like sand to very hard like black cotton sand.
Journal Article

Mitigating Unintended Acceleration and Deceleration Hazards by Defining Drive Torque Command Tolerance Criteria for Commercial Truck Electric Motor Propulsion Control Systems

2023-04-11
2023-01-0548
A commercial truck electric motor propulsion control system may require hundreds of inputs to optimize the drive torque command. As a safety-related signal, the drive torque command requires protections ensuring its integrity. Similarly, the inputs used by the control system to determine the drive torque command also require protections. To define these protections, the ISO 26262:2018 series of standards prescribe the development of safety requirements and associated Automotive Safety Integrity Levels (ASILs). Safety requirements ensure safe system output, in part, by protecting system inputs. Satisfying these safety requirements to their ASILs adds complexity and cost to commercial truck electric motor propulsion control systems. The greater the safety-related signal count, the greater the complexity and cost added.
Technical Paper

Study on a Method for Reconstructing Pre-Crash Situations Using Data of an Event Data Recorder and a Dashboard Camera

2024-04-09
2024-01-2891
When investigating traffic accidents, it is important to determine the causes. To do so, it is necessary to reconstruct the accident situation accurately and in detail using objective and diverse information. We propose a method for reconstructing the accident situation (“reconstruction method”) which consists of rebuilding the situation immediately before the collision (“pre-crash situation”) using data collected during that time by an event data recorder (EDR) and a dashboard camera (DBC) onboard one or both of the vehicles involved. First, the vehicle’s traveling trajectory was integrally calculated using the vehicle speed and yaw rate recorded by the EDR, each point along the trajectory being linked to the EDR data.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

GEAR SELECTION INTERLOCK MECHANISM FOR COMMERCIAL VEHICLE TRANSMISSION

2014-04-01
2014-01-1718
In a transmission for Automobiles, the driver's comfort of smooth shifting and selection of gears is a major concern for the transmission designer. To achieve this comfort, lot of work and improvement has been done in the past few years and still some more improvements are in continuation by the automobile manufacturer. Apart from the smooth shifting and selection of gears while driving, the safety of the driver is also a major concern for the vehicle manufacturer. This paper relates to a safety Interlock mechanism of vehicle gear shifter selector lever to a drive position, until a predetermined condition is satisfied. There are various gear shift pattern exists in the vehicles, which depends upon the number of gears in the gearbox. Generally, two types of gear shift pattern are commonly used in commercial vehicles. 1st-2nd, 3rd- 4th, 5th-6th, Rev and Rev-1st, 2nd-3rd, 4th-5th, 6th.
X